İşte irrasyonel sayılar hakkında markdown formatında bilgi:
İrrasyonel sayılar, rasyonel sayılar gibi iki tam sayının oranı şeklinde ifade edilemeyen, yani kesirli olarak yazılamayan gerçek sayılardır. Bu sayıların ondalık açılımları sonsuza kadar tekrar etmeden veya bir örüntü oluşturmadan devam eder.
Örnekler:
Pi (π): Bir dairenin çevresinin çapına oranıdır. Yaklaşık değeri 3.14159'dur, ancak ondalık açılımı sonsuza kadar devam eder ve tekrar etmez. (Pi (π) Nedir?)
Karekök 2 (√2): Hangi sayının kendisiyle çarpımı 2'ye eşittir sorusunun cevabıdır. Yaklaşık değeri 1.41421'dir ve ondalık açılımı sonsuza kadar tekrar etmez. (Karekök Nedir?)
Euler Sayısı (e): Doğal logaritmanın tabanıdır. Yaklaşık değeri 2.71828'dir ve ondalık açılımı sonsuza kadar tekrar etmez. (Euler Sayısı Nedir?)
Altın Oran (φ): Yaklaşık olarak 1.6180339887... değerine sahip irrasyonel bir sayıdır. Bir çizginin, bir dikdörtgenin veya herhangi bir şeyin parçalarının birbirleriyle ve bütünle olan oranlarının birçoğunda bulunan ve göze hoş geldiği düşünülen bir orandır.(Altın Oran Nedir?)
Temel Özellikler:
Sonsuz Ondalık Açılım: Ondalık gösterimleri sonsuzdur ve tekrar eden bir örüntü içermez.
Rasyonel Sayılarla Karşılaştırma: Rasyonel sayılar kesirli olarak ifade edilebilirken, irrasyonel sayılar bu şekilde ifade edilemez.
Gerçek Sayılar: İrrasyonel sayılar, rasyonel sayılarla birlikte gerçek sayılar kümesini oluşturur.(Gerçek Sayılar Nedir?)
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page